

Low-Cost Diode Arrays for Production-Scale Fusion Energy Installations

HECDPSSL September 12, 2012

Northrop Grumman Cutting Edge Optronics

Ryan Feeler, Ph.D., Jeremy Junghans, Joe Levy

Outline

- Disclaimers...
- NGCEO Overview
- Diode Specifications LIFE and similar programs
- Potential Diode Package
- What about VCSELs?
- Outlook

Disclaimers...

- Vantage point diode lasers
- Most of my information is based on U.S. / LIFE
- Suggested design is just one of many options

NGCEO Overview

- Cutting Edge Optronics is a wholly-owned subsidiary of Northrop Grumman
- Located outside of St. Louis, MO
 - $36,000 \text{ ft}^2 \text{ facility}, \sim 90 \text{ people}$
 - All manufacturing and R&D is done at this facility
 - Bar fabrication and packaging since late 1990s

NGCEO Product Overview

DPSS Laser Amplifiers

HIGH-INTENSITY LASERS: DIODE SPECIFICATIONS

High-Intensity Laser Overview

NIF → LIFE

- Lessons learned from NIF provide the framework for LIFE
- Many differences, including the transition from flashlamp pumping to diode pumping
- Diode costs
 currently represent
 30-50% of the
 entire system cost

LIFE Diode Specifications (Technical)

Item	Units	Minimum Value	Target Value	Current State / Comments
Intensity	kW/cm ²	10	25	~ 10 (300W @ 350 μm) ~ 22 (300W @ 150 μm) May require 600-700W bar
Efficiency		70%	75%	60-70% (commercial) 70+ (SHEDS, BRIOLAS)
Fast axis divergence	degrees FW 1/e ²	±4	±3	
Slow axis divergence	degrees FWHM	±10	±7	Matches divergence of typical unlensed bar
Wavelength	nm		872	Typical structure
Wavelength spread	nm	±8	±5	
MTTF	Gshots		14	Easily Achievable
Repetition Rate	Hz		15	Low heat → Novel (low-cost) packaging
Pulse Width	μs		200	"
Duty Cycle	%		< 0.5	. ((
Temperature of mounting plate	°C		5	
Packaging Density				Minimal dead space between diode bars – largest challenge

Now The Hard Part...

- Order of Magnitude numbers:
- Total pump power 50-200 GW
 - − ~ 200 million bars @ 500 W/bar
 - $-\sim 2$ orders of magnitude higher than current supply
- Schedule ~ 8-10 years
 - Subject to congressional funding
- Price target ~ \$0.01 / W
 - Includes packaging and lensing
 - ~ 2 orders of magnitude cheaper than today
- And this is just for the first plant...

What is required?

- Increasing supply capability by two orders of magnitude requires a ~ 60% AGR for 10 years
- In line with LED ramp-up
 - Much DOE involvement / investment
 - Significant Chinese government investment
- 8-year schedule → 80%
 AGR
- If we're going to do this,
 we need to get started

LED Examples

- Tremendous increase in LED production
- MOCVD reactor shipments:

− 2009: ~ 250

- 2010: ~ 800

- 2011: \sim 1100

- 50% year-over-year growth in the production value of highbrightness LEDs
- 300-400 reactors/year needed to meet demand
- Chinese subsidies have driven the market
- Lumens/\$ is ahead of industryestablished roadmap
- Concerns:
 - Oversupply of reactors
 - Undersupply of MOCVD engineers

High-brightness LED market production value, 2008-2013 (US\$m)

Sources: DigiTimes

LEDs Magazine

DOE SSL Manufacturing Workshop

Different Thinking

2012	~ 2022	
cm edge emitters	bigger edge emittersVCSELs / wafer-level processingnot yet invented	
Conventional diode packaging	High density packagingWafer scale	
Business driven by science	Business driven by manufacturing	
Sequential iterations on existing manufacturing processes	Transition to more LED-like thinking	
Current pace of market penetration	Increased market penetration due to lower costs	

What would the market look like if diode bars were essentially free?

Conventional Diode Packaging

- Power density in a standard array defined by per-bar power and width of heatsink located between bars
- Heatsink cost ~ bar cost
- Lenses individually attached (manually or automatically)
- Even in automated processes, all bars treated as individuals
 - Bar cleaving / singulation
 - Facet coating
 - Packaging

Why do we do this?

- Manufacturing methods developed to meet a wide variety of specifications
- Bars individually mounted to heatsink → Allows for heat dissipation at higher repetition rates (100s-1000s of Hz)
 - Connection to backplane
 - Space between heat sources
- Individual collimating lenses → Facilitates excellent collimation in the fast axis (< 0.15° FWHM)
- Neither of these are required for the current LIFE design, but the costs are still there

High Density Stack Packaging

- Low duty cycle of fusion power plants allows for novel packaging
- Elimination of heatsinks reduces cost and increases intensity
- Single optic for stack, engineered to produce required fast-axis divergence
- Arrays can be produced in stack sizes of 20-50 bars
- Drastically increased power density

Array Comparison

- Difference in packaging & power density clearly seen in photograph and near field image
- NGCEO has been packaging HDS (and variants) for ~ 12 years
- Package is limited only by heatsinking
 - No heat sink between bars
 - → Middle bars run at higher temperatures
 - No effect seen up to ~ 2% duty
- Only possible because of elimination of COD failure mode (elimination of collateral damage)

What does this buy us (cost)?

- Elimination of heatsink
 - Reduced material cost
 - Elimination of ~ 50% of solder bonds (alignment, cost)
- Changes the basic building block

- Changes processing options
- Build/test/etc. in "blocks" instead of single bars/assemblies

PI Data – High Density Stacks

- PI data for standard and high density stacks shown at right
- 20 Hz, 150 μs
 - Similar duty cycle to typical fusion installations
- No change in slope or threshold observed
- Other test data indicates this is the case up to ~ 2% duty cycle
- Additional optimization will increase operating envelope of this package

Power Density Comparison: High Density Stack vs. Standard Array

- High Density Stacks offer power densities not available with standard arrays
- HDS @ 150W/bar offers the same power density as 400 µm pitch array @ 400W/bar
- HDS available with same bars as standard arrays
 - Same peak power levels

50-bar HDS @ 500 W/bar

Specification	Specification	Example Package	Comment
Intensity	25 kW/cm ²	50 kW/cm ²	Higher intensities are available
Efficiency	75%	60+%	Higher efficiency available
Fast-axis divergence	±3 degrees (1/ e ²)	TBD	
MTTF	14 billion shots	>> 14 billion shots	Higher lifetimes are available
Stack Power		25 kW	
# of stacks		400k	
# of bars		200 million	
Total price of diodes		???	

Further Examples

- HDS arrays based on mini-bars
- Segmented HDS arrays
 - 60 bars
 - Design for 15-25 arrays around a thick disk
 - ~ 12 kW in 1cm²

Other Challenges

- Every photon requires an electron
 - 500-700W bars → 500-700A drivers
- Diodes packed in close proximity
 - Small drivers located near the array, or
 - A power delivery and inductance nightmare
- Required for production installations
- Required for all diode manufacturers
 - Testing, burn-in, life test, etc.

What about VCSELs?

- Why VCSELs? Long the "holy grail" of the semiconductor laser field
 - Low-divergence beam
 - Temperature insensitivity (~ 1/5th typical edge emitter)
 - → Simpler cooling requirements
 - → Lower system cost
 - Narrow spectral linewidth
 - Wafer-level processing
 - Pathway to low device cost

Princeton Optronics

Why not VCSELs?

- Insufficient power density
- Current product offerings:
 - Lasertel: 1kW in 1cm² (also 40% PCE)
 - Princeton Optronics: 1.2kW in >1cm² (35% PCE)
- Edge-emitters have a big head start:
 - > 1 order of magnitude in power density
 - 1.5-2x in PCE

~ 5.8mm x 20mm Princeton Optronics

Conclusions

- The technical specifications of the LIFE project are directly achievable from today's technology
 - Can be surpassed in many cases
- The technical specs for the arrays may be the easiest part of the whole project, and they're not easy
- Will need LED-like increases in supply chain to make LIFE a reality
- The sooner we start, the sooner we will get there

NORTHROP GRUMMAN